

Welcome to Light Snake’s documentation!

Contents:

	Introduction

	Hardware

	Software

	Communication
	Bluetooth

	Serial Communication

	Class LightSnake

	Class Led

	Class SpeedControl

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This light sculpture was build in 2013/2014. It is the one of the first LED projects
from Klingdesign [http://klingdesign.de/].

Klingdesign is the light artist Christiane Kling. She produces tailor made light sculptures.
Since 2013 the electronic engineer Günther Beulen has been joining Klingdesing.
He develops Hard- and Software. And this is their first big project:

[image: _images/light-snake.jpg]
To see the light snake in action, here is the Youtube video [https://www.youtube.com/watch?v=SOMzYjLtzh4].

Hardware

This light sculpture includes 15 power LEDs. Each power LED has its own current source [http://led-treiber.de/html/getaktete_treiber.html#Treiber-555-MOSFET].

Each current source contains a NE555 working as a two-level controller. The average value
of the current is 300 mA. The pin 4 of a NE555 is a reset pin, which can be used for
intensity control via PWM. The next photo shows the LTspice model, which is available in the repository.

[image: _images/LTspiceModelCurrentSourceNE555.png]
To control all 14 current sources the Adafruit PCA9685 16-Channel Servo Driver [https://learn.adafruit.com/16-channel-pwm-servo-driver?view=all],
based on the IC PCA9685 [https://www.nxp.com/products/power-management/lighting-driver-and-controller-ics/ic-led-controllers/16-channel-12-bit-pwm-fm-plus-ic-bus-led-controller:PCA9685], is used.

This IC is controlled by an Arduino Uno [https://www.arduino.cc/en/Main/arduinoBoardUno>]. This board is based on the ATmega328P [https://www.microchip.com/wwwproducts/en/ATmega328P].

Software

The software was written with the Arduino IDE [https://www.arduino.cc/en/Main/Software_]. The library
Adafruit-PWM-Servo-Driver-Library [https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library] handels the PCA9685 [https://www.nxp.com/products/power-management/lighting-driver-and-controller-ics/ic-led-controllers/16-channel-12-bit-pwm-fm-plus-ic-bus-led-controller:PCA9685]. It is available from the
Arduino library manager.

Communication

Bluetooth

Serial Communication

The serial communication is possible with the USB port
of the Arduino Uno or with the RX/TX pins of the
controller.

It is possible to debug the light sculpture. Each LED
can be tested. If it is currently on the PWM control
may be defective and if it is currently off than the LED
or the current source may be defective.

Class LightSnake

	
class LightSnake

	
Public Functions

	
void setup()

	This function initializes the LightSnake class.

The class contains one instance of the class Adafruit_PWMServoDriver and an array of the class Led. The random generator and the class Serial will be initialized, too.

	
void loop()

	This function repeats the updates of the intensites of the leds.

Every element of the Led Class is called. Their intensities are updated and at the min or max value a new duration of the speed is evaluated. The new intensities are send via the I2C bus to the PCA9685.

	
void help()

	This method prints an info.

The Serial Monitor of the Arduino IDE, PuTTY or picocom can be used.

	
void info()

	This methode prints the info of all Leds.

The number, intesity, darker and duration of all LEDs are printed. And the time each the last loop has needed and the cycle time of the loop.

	
void clearAllLEDs()

	Clear all LEDs.

All LEDs are cleared by sending the intensity Zero to each chanel of the PCA9685

	
int8_t getNumber()

	This method is used by getting the number of a LED and by getting the new duration.

	Returns

	number

	
void getLEDNumber()

	Gets he number of the LED to test.

Get the number of the LED to test. Hexadecimal number are used (0..9, A, B, C, D). X will delete this loop.

	
void testLED(uint8_t)

	This method tests the specified LED.

First all LED are turned off. After waiting for a second, the specified LED is turned on for a second and then turned off. So the hardware can be tested. The Serial Monitor of the Arduino IDE, PuTTY or picocom can be used.

	
void testAllLEDs()

	This method tests the LEDs and their current sources.

Every LED is beeing tested after this method is called. First all LED are turned off. After waiting for a second, every LED is turned on for a second and then turned off. After waiting for a second, the next LED is turnde on and off. So the hardware can be tested.

	
void invertOutputOfLoopDuration()

	This method handels the output of the loop time.

The output of the looptime, the duration of an cycle, can be enabled or disabled. Every time when this method is called, the corresponding boolean varialble is inverted.

	
void changeLoopDuration(bool)

	This method sets a new duration time for the loop.

The time sets the duration for the loop. If this value is to small, the function will not wait and start immediately with the next cycle. After each cycle the methods waits till the duration of a cycle is over. A loop duration can be set with a char. This character represent a hexadecimal digit. Hexadecimal number are used (0..9, A, B, C, D, E, F). The new duration time is this digit multiplied by 5 ms. At the end of the loop, the output of millis() is polled. If the value 0 is choosen, the next loop starts immediately.

	
void setIndex(bool)

	This methods sets the beginning of an array.

There can be different arrays containing the intensities. With this method the index of the progmem is set globally for all LEDs.

	
void readEeprom()

	This method reads the content of the EEPROM.

The user can set the cycle time and the index of the used PROGMEM. The setup function can read the stored values. If a 255 is read, than the EEPROM has not been programmed yet. Than the cycle time and the index are set to default values.

	
void writeEeprom()

	This methods writes the current values to the EEPROM.

If the user changed the loop time and the PROGMEM index, he can save this to the EEPROM. So they will be loaded at the next start.

Class Led

	
class Led

	
Public Functions

	
uint8_t getNumber()

	
	Returns

	the number of the LED

	
void setNumber(uint8_t)

	
	Parameters

	number – of the LED

	
uint16_t getIntensity()

	
	Returns

	intensity of the LED

	
void setIntensity(uint16_t)

	
	Parameters

	intensity – of the LED

	
uint8_t getPointer()

	
	Returns

	pointer to the intensity table

	
void setPointer(uint8_t)

	
	Parameters

	pointer – to the intensities

	
uint8_t getProgmemIndex()

	
	Returns

	pointer to the intensity table

	
void setProgmemIndex(uint8_t)

	
	Parameters

	pointer – to the intensities

	
bool getDarker()

	
	Returns

	darker of the LED

	
void setDarker(bool)

	
	Parameters

	darker – if the brightness of the LED decreases

	
void invertDarker()

	inverts darker

	
bool getWaitAtMinIntensity()

	
	Returns

	waitAtMinIntensity

	
void setWaitAtMinIntensity(bool)

	
	Parameters

	waitAtMinIntensity – this LED waits at its ninimal brightness

	
bool getWaitAtMaxIntensity()

	
	Returns

	waitAtMaxIntensity

	
void setWaitAtMaxIntensity(bool)

	
	Parameters

	WaitAtMaxIntensity – this LED waits at its naximal brightness

	
uint8_t getCyclesAtMinIntensity()

	
	Returns

	cyclesAtMinIntensity of the LED

	
void setCyclesAtMinIntensity(uint8_t)

	
	Parameters

	cyclesAtMinIntensity – this LED waits this cycles at its ninimal brightness

	
uint8_t getCyclesAtMaxIntensity()

	
	Returns

	cyclesAtMaxIntensity this LED waits at its ninimal brightness

	
void setCyclesAtMaxIntensity(uint8_t)

	
	Parameters

	cyclesAtMaxIntensity – this LED waits this cycles at its maximal brightness

	
bool getDarkerHasChanged()

	
	Returns

	_darkerHasChanged

	
bool getIntensityAtMin()

	
	Returns

	_intensityAtMin

	
bool getIntensityAtMax()

	
	Returns

	_intensityAtMax

	
void increaseIntensity()

	Increases the intensity.

If the new intensity is equal to the maximal intensity, the intensities will be decreased in the next step.

	
void decreaseIntensity()

	Decreases the intensity.

If the new intensity is equal to the minimal intensity, the intensities will be increased in the next step.

	
void changeIntensity()

	Increases or decreases the member _intensity.

In dependency of the boolean value of darker the method increaseIntesity or decreaseIntensity is called.

	
void increasePointer()

	Increases the pointer to the intensities.

If the new value of the pointer is equal to the size of the array, the pointer will be decreased in the next step;

	
void decreasePointer()

	Decreases the pointer to the intensities.

If the new value of the pointer is equal to zero, the pointer will be increased in the next step.

	
void changePointer()

	Increases or decreases the pointer.

In dependency of the boolean value of darker the method increasePointer or decreasePointer is called.

	
void pointer2int()

	The array with the intensitys is included in the header file ‘

intensities.h’. This file has been created by the python script ‘progmen_creator.py’.

	Returns

	the content of the PROGMEM array.

	
bool letSpeedControlCount()

	Call counter method of class SpeedControl.

The property counter of the aggregated class SpeedControl is decreased. If its value is equal to zero, true is returned. The variable is the initialized with the duration.

	
void setSpeedControlDuration(uint8_t)

	
	Parameters

	duration – time at one intensity (property of the class SpeedControl)

	
uint8_t getSpeedControlDuration()

	
	Returns

	duration (the time at one intensity, property of the class SpeedControl)

	
void setSpeedControlCounter(uint8_t)

	
	Parameters

	counter – If a longer duration is wanted, the counter can be set to a value greater than duration.

	
uint8_t getSpeedControlCounter()

	
	Returns

	counter counts from duration to zero

Class SpeedControl

	
class SpeedControl

	
Public Functions

	
uint8_t getCounter()

	
	Returns

	counter

	
void setCounter(uint8_t)

	
	Parameters

	counter – of the LED

	
uint8_t getNumber()

	
	Returns

	number of the LED

	
void setNumber(uint8_t)

	
	Parameters

	number – of the LED

	
uint8_t getDuration()

	
	Returns

	duration of the entensity

	
void setDuration(uint8_t)

	The duration specifies the time at an intensity

	Parameters

	duration – of the intensity

	
bool count()

	The method decreases the counter, if the counter has the value zero, true is returned.

	Returns

	(counter == 0)

Index

 L
 | S

L

 	
 	Led (C++ class)

 	Led::changeIntensity (C++ function)

 	Led::changePointer (C++ function)

 	Led::decreaseIntensity (C++ function)

 	Led::decreasePointer (C++ function)

 	Led::getCyclesAtMaxIntensity (C++ function)

 	Led::getCyclesAtMinIntensity (C++ function)

 	Led::getDarker (C++ function)

 	Led::getDarkerHasChanged (C++ function)

 	Led::getIntensity (C++ function)

 	Led::getIntensityAtMax (C++ function)

 	Led::getIntensityAtMin (C++ function)

 	Led::getNumber (C++ function)

 	Led::getPointer (C++ function)

 	Led::getProgmemIndex (C++ function)

 	Led::getSpeedControlCounter (C++ function)

 	Led::getSpeedControlDuration (C++ function)

 	Led::getWaitAtMaxIntensity (C++ function)

 	Led::getWaitAtMinIntensity (C++ function)

 	Led::increaseIntensity (C++ function)

 	Led::increasePointer (C++ function)

 	Led::invertDarker (C++ function)

 	Led::letSpeedControlCount (C++ function)

 	Led::pointer2int (C++ function)

 	Led::setCyclesAtMaxIntensity (C++ function)

 	
 	Led::setCyclesAtMinIntensity (C++ function)

 	Led::setDarker (C++ function)

 	Led::setIntensity (C++ function)

 	Led::setNumber (C++ function)

 	Led::setPointer (C++ function)

 	Led::setProgmemIndex (C++ function)

 	Led::setSpeedControlCounter (C++ function)

 	Led::setSpeedControlDuration (C++ function)

 	Led::setWaitAtMaxIntensity (C++ function)

 	Led::setWaitAtMinIntensity (C++ function)

 	LightSnake (C++ class)

 	LightSnake::changeLoopDuration (C++ function)

 	LightSnake::clearAllLEDs (C++ function)

 	LightSnake::getLEDNumber (C++ function)

 	LightSnake::getNumber (C++ function)

 	LightSnake::help (C++ function)

 	LightSnake::info (C++ function)

 	LightSnake::invertOutputOfLoopDuration (C++ function)

 	LightSnake::loop (C++ function)

 	LightSnake::readEeprom (C++ function)

 	LightSnake::setIndex (C++ function)

 	LightSnake::setup (C++ function)

 	LightSnake::testAllLEDs (C++ function)

 	LightSnake::testLED (C++ function)

 	LightSnake::writeEeprom (C++ function)

S

 	
 	SpeedControl (C++ class)

 	SpeedControl::count (C++ function)

 	SpeedControl::getCounter (C++ function)

 	SpeedControl::getDuration (C++ function)

 	
 	SpeedControl::getNumber (C++ function)

 	SpeedControl::setCounter (C++ function)

 	SpeedControl::setDuration (C++ function)

 	SpeedControl::setNumber (C++ function)

 nav.xhtml

 Table of Contents

 		
 Welcome to Light Snake’s documentation!

 		
 Introduction

 		
 Hardware

 		
 Software

 		
 Communication

 		
 Bluetooth

 		
 Serial Communication

 		
 Class LightSnake

 		
 Class Led

 		
 Class SpeedControl

_static/file.png

_images/light-snake.jpg

_static/minus.png

_static/plus.png

_images/LTspiceModelCurrentSourceNE555.png
R1

LAT

12 »
200m D1
R3 v :g DZL
100k BC557C BC557C VA
Q1 Q2 1N5817
= L1
H 470p
.param f 1600
.param dc 0.5 Heale —
— M1
.param f 1600 RS =n
.step param dc 0.1 0.9 0.1 R2 Gat —{IRF7343N
100k 0
.step param f 1000 1600 100 ~
.param dc 0.5
.param f 500
.param dc 0.1 N4
=
b g B o Vel 12
Vi v2 u1
Trig— | TRIG DIS — Gate
12 -
Gate—— OUT THRS —Trig
NE555 c2
PULSE(0 5 0 1u 1u {dc/f} {1/f}) R o & i
10p

.tran 20m

